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Executive summary

Time series simulation of ships dynamic behaviour in waves needs to be based on a wave sequence that 
represents irregular sea states in a realistic way. is short note discusses the quality of wave sequence 
generation based on standard sea spectra and has been set up to document some experience gained as a 
side product of other studies.

It is recommended to use a transformation of the traditional frequency based wave spectrum to a period 
based spectrum for the purpose of simulation of wave sequences and wave induced effects on ships such 
as motions and dynamic stability variation. is transformation will enable the use of fewer compo-
nents and at the same time a very high statistical quality and unlimited return periods before the wave 
pattern will be repeated.
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Notes on the modeling of irregular seas in time simulations

1  Introduction

Time series simulation of ships dynamic behaviour in waves needs to be based on a wave sequence that 
represents irregular sea states in a realistic way. is short note has been set up to document some expe-
rience gained as a side product of other studies. It discusses the quality of wave sequence generation 
based on standard sea spectra and gives some recommendations on suitable modelling approaches.

2  Standard wave spectrum formulation in the frequency domain

e standard form of a wave energy spectrum illustrates the distribution of energy of the frequency do-
main. It can be seen as a Fourier transform of measuring sample of the water surface elevation where the 
irregular wave pattern is broken down to harmonic components.
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Figure 2.1 Example of wave energy spectrum in the frequency domain
(standard 2-parameter Bretschneider spectrum Hs=4m, Tz=10s)

e shape of the wave spectrum reflects the character of the irregular sea. A spectrum with large area 
represents a severe sea state with large waves, a spectrum that is spread out over a wide span of frequen-
cies represent a very chaotic sea state with a mixture of short and long waves while a narrow spectrum 
represents a rather regular sea state (such as swell) where most of the energy is concentrated to waves 
with almost the same frequency.

e water surface elevation at a certain position and time is a stochastic variable in a real (random) ir-
regular sea. e spectrum can therefore never give the exact deterministic description of the sea but only 
statistical parameters that describe the character of the sea, and vice versa can standard spectra be de-
fined if these statistical parameters are measured.
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e characteristic parameters are usually defined by the moments of the spectrum

    
mn = ωnS(ω)dω∫   (2.1)

e most commonly used description of wave heights is the significant wave height Hs or H1/3 which is 
defined as the average of the 1/3 largest wave heights and approximately corresponds to the visual ap-
pearance of typical wave heights in irregular seas (the human eye filters out the lower components).

   H s = 4 m0   (for the spectrum shown in Figure 2.1, H s = 4m)  (2.2)

For statistical characteristic values of wave periods unfortunately there are several different definitions 
dependent on the context. e following list contains the most used alternatives but the denominations 
are not standard.

    

Tp =
2π
ωm

   peak period where ωm  is the modal frequency corresponding to the maximum energy

(in Figure 2.1, ωm  is 0.45rad/s and Tp  is 14.0s)
(2.3)

    
T−1 = 2πm−1

m0
   mean (meteorological) period (in Figure 2.1, T−1  is 12.0s)  (2.4)

    
T1 = 2πm0

m1
   mean (average) period (in Figure 2.1, T1  is 10.8s)  (2.5)

    
Tz =T0 =T2 = 2π m0

m2
   mean (zero crossing) period (in Figure 2.1, Tz  is 10.0s)  (2.6)

    
Tmax = 2π m2

m4
   mean period between maxima (in Figure 2.1, Tmax  is 6.2s)  (2.7)

In similar way one can define a statistical wave length

    
λ0 = g Tz Tmax

2π
   mean apparent wave length (in Figure 2.1, λ0  is 97m)  (2.8)

e most simple standard wave spectra use a fixed shape formulation that is tuned by only two parame-
ters, significant wave height and any of the characteristic periods listed above (2-parameter Bretschnei-
der spectra). Figure 2.1 is based on the following formulation

    
S(H s ,Tz ,ω) =

H s
2Tz

8π2

2π
ωTz

⎛
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⎞
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e
−
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π

2π
ωTz

⎛

⎝
⎜⎜⎜⎜
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⎟⎟⎟⎟⎟

4

  (2.9)

However, it must be stressed that real world wave spectra seldom are as smooth as such standardised 
spectra. ere may for instance well be several peaks for different dominating frequencies.
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3  Wave spectrum formulation in the period domain

An alternative and (in my view) more physical way to describe the irregular sea is to transform the stan-
dard wave frequency domain to the wave period domain. e condition to be satisfied for such a trans-
formation is that the total energy, described by the integral of the spectrum, is to be maintained.

    

S(ω)dω=
ωmin

ωmax

∫ S(T )dT
Tmin

Tmax

∫

with ω=
2π
T

 we get

Sω (ω)dω=
ωmin

ωmax

∫ Sω (ω) dω
dT

dT =
Tmax =

2π
ωmin

Tmin =
2π
ωmax

∫ Sω (2π
T

)−2π
T 2 dT =

Tmax

Tmin

∫ Sω (2π
T

) 2π
T 2 dT

Tmin

Tmax

∫ = ST (T )dT
Tmin

Tmax

∫

where

ST (T ) = Sω (2π
T

) 2π
T 2 = Sω (ω)ω

2

2π

 

  (3.1)

e standard 2-parameter spectrum in equation (2.9) can thus alternatively be written

    
S(H s ,Tz ,T ) =

H s
2Tz

4πT 2

T
Tz
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  (3.2)
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Figure 3.1 Example of wave energy spectrum in the period domain
(same standard 2-parameter Bretschneider spectrum as in Figure 2.1, Hs=4m, Tz=10s)
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is transformation has several advantages compared to the standard formulation in the frequency do-
main. Firstly, it is possible to interpret intuitively (I can’t imagine anyone describing seas in terms of an-
gular frequencies…); a period-based spectrum will be much easier to communicate with the officers on 
board. Secondly, as will be shown in the following sections, a period based spectrum is much better 
suited for discretisation and is superior as basis for numerical simulations of irregular seas.

In the frequency domain, the major part of the energy is concentrated to a narrow band of frequencies 
while the rest of the energy is spread out over a relatively long tail with higher frequencies. Transformed 
to the period domain, we can clearly see that the energy distribution is much better represented with 
little skew and a well defined range of periods without long tails.

e mean (meteorological) period T–1 defined in (2.4) is well representing both the average and the 
peak of the transformed spectrum while the ”peak” period Tp calculated from the modal frequency 
(2.3) shows off not to correspond to the period with the highest energy!

It should be stressed that although these two representations of the wave energy distribution are identi-
cal the transformation makes it clear that from a semantic point of view that one should avoid express-
ing characteristic periods from the frequency spectrum (and vice versa).

4  Wave sequence generation for numerical simulations

When generating sample sequences of waves in numerical simulations, the standard solution is to divide 
the frequency spectrum into a number of discrete harmonic wave components (unfortunately often 
with equally spaced frequencies) that are superposed with random phase lag.
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Figure 4.1 A simplified illustration of how an irregular sequence of waves can be simulated from 
a wave spectrum. e quasi-random wave height is indicated by the arrows. 
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e amplitude of each harmonic component in the simulation is calculated from the spectrum as 

    
ai = 2 S(ω)dω

ωi−0.5Δω

ωi +0.5Δω

∫   (4.1)

ere are two major quality indicators of the sampling:

1. e ability to produce long (or infinite) return periods Tr  i.e. the total time span that a certain 
set of random phase lags may generate a unique sequence of waves that is not repeated.

2. e ability to produce a (theroretically) correct distribution of time samples:
In an irregular sea composed of infinite number of wave components, the surface elevation 
shall according to the central limit theorem by normal (Gauss-) distributed with the variance 
equal to the area under the spectrum m0. e distribution of amplitudes should follow close to 
a Rayleigh distribution (dependent on the bandwidth) and the simulation shall be able to pro-
duce large amplitudes during long sequences of sampling.

Although these indicators are somewhat linked, they can be adjusted by different means. Let us look at 
each of them separately and compare the two alternative spectrum formulations.

4.1 The return period of sampled sequences
e condition for a repeated sequence is that all harmonic components of the superposed wave profile 
must have run through an (integer) number of full periods at the same time. is can be used to form a 
set of conditions for the return period Tr. For all components the following condition must be satisfied:

     

ω1

2π
+ (i−1)Δω

2π
⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟Tr = ki

where
ω1    is the frequency of the first component
i    is the component number, i = 1,2…,n   where n is the total number of components
Δω    is the constant step in frequency between components
 Tr    is the return period for the superposed wave pattern
ki    is an integer number

 (4.2)

     

Since

k1 =
ω1

2π
Tr   is integer,

then (4.2) brakes down to satisfying the following condition

 k2 = k1
Δω
ω1

+1
⎛

⎝
⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟, ω1 > 0[ ]   or  k2 = 1, Tr =

2π
Δω

, ω1 = 0[ ]  

which then will satify all other conditions for i = 3,4…n  because
k1 + (i−1)(k2−k1) = ki   must by default always be integer if k1  and k2  are integer

 (4.3)

It is worth noting that the conditions are in principle independent of n, we can get a very short return 
period even if the spectrum is divided into hundreds of harmonic components!
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Lets take two examples from the same spectrum as illustrated in the previous figures.

e first example:

     

n = 10
ω1 = 0.2   Δω= 0.22  which gives ωi = 0.2, 0.42,…, 2.18 [rad/s]
then we get k1 = 10  and k2 = 21  satisfying (4.3), which gives

Tr =
10 ⋅2π
ω1

= 100π= 314.2s

e second example:

     

n = 100
ω1 = 0.2   Δω= 0.02  which gives ωi = 0.20, 0.22,…, 2.18 [rad/s]
then we get k1 = 10  and k2 = 11  satisfying (4.3), which gives exactly the same return period!

Tr =
10 ⋅2π
ω1

= 314.2s
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Figure 4.2 Two examples of simulated wave sequences n=10 (top) and n=100 (bottom) with the 
same return period. Note the more regular pattern in the first example.
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One way of extending the return period for the superposed frequency components is to make the ratio 

   

Δω
ω1

as far from a simple rational expression as possible (or even non-rational e.g. by expressing one of 

the two frequencies as a fraction of e). However, even if the theoretical return period thus becomes infi-
nite, the general character will still be very close to repeated shorter sequences.

If we instead use the period based spectrum with constant steps in the period domain, the return period 
must satisfy:

    

Tr

T1 + (i−1)ΔT
= ki

where
T1    is the period of the first component
i    is the component number, i = 1,2…,n   where n is the total number of components
ΔT    is the constant step in periods between components
 Tr    is the return period for the superposed wave pattern
ki    is an integer number

 (4.4)

is condition gives much longer return periods because we have to find the common denominator of 
all components. It can be shown that the return period will be

   Tr ≥T1 +ΔT (n−1)!   (4.5)

If we are to cover a range of periods from 1s-25s with 10 components with equal steps in periods, then

   
T1 = 1, ΔT =

25−1
9

, Tr = 1+
25−1

9
(9)! = 1+ 24 ⋅(8)! = 967681s≈11.2days

We see that the return period will never be a problem with a reasonable number of components if we 
use constant steps in the period domain.
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Figure 4.3 Example of a simulated wave sequence from a period spectrum divided in 10 compo-
nents. e irregular character and quality is similar to the bottom sequence in Figure 
4.2 (n=100), the return period is more than 2400 times the shown period.
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4.2 Statistical quality of sampled wave sequence
In the following, we shall compare discretisation with equal steps in the frequency domain and period 
domain respectively. For a single harmonic surface wave, the distribution of momentary measures of the 
water level will follow a frequency distribution defined by1

    
f (ζ ) =

1
π a2−ζ 2

  (4.6)

With a superposition of a large number of wave components with random phase the water level will 
according to the central limit theorem approach the normal distribution

    
f (ζ ) =

1
2πm0

e
−
ζ2

2m0   (4.6)

where m0 that is the wave spectrum area according to (2.1) will be the variance of the normal distribu-
tion.

In order to illustrate the difference between the two spectrum formulations, a 3600s wave sequence 
have been simulated with different number of components n=5, 10, 50 and 100 from the same spectra 
as used in previous examples. In the frequency domain the components covers the range from 0.2 to 
2.18rad/s and in the period domain the range of periods is 1.0 to 25s. e water level has been sampled 
with a frequency of 5Hz and the distribution is illustrated with histograms in Figure 4.4. In the figure 
also the theoretical sample maximum amplitude (i.e. the sum of all component amplitudes) and the 
actual measured max amplitudes and standard deviation during on hour is given. e standard devia-
tion shall theoretically be 1.00 (and assuming a zero bandwidth the theoretical most probable maxi-
mum amplitude should be approximately ±3.4m).

It should be emphasised that the comparison is just one sample out of an infinite number of possible 
random sequences. However, the result is typical and indicative. From any point of view, the wave 
simulation from a period spectrum will be superior to that from a frequency spectrum. Even with as low 
as 10 components, the quality of the simulation is very good.
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Figure 4.4 Comparison of 5Hz samples from one hour simulation of wave pattern in an irregu-
lar sea with significant wave height Hs=4m and zero crossing period Tz=10s.
e random phase lags between components have been kept constant throughout the 
simulation. (e histogram y-axis is normalized so the level should be disregarded)
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5  A possible new standard wave simulation model

It would be convenient to try to establish one standard for wave simulations that would cover all kind 
of wave spectra. is would facilitate simulation code development and enable better benchmarking 
opportunities.

e 2-parameter Bretschneider spectrum used here to illustrate the advantages with a period based dis-
cretisation, was developed to describe fully developed seas on the deep oceans and has a large bandwidth 
compared to spectra in more restricted areas (such as the JONSWAP spectra). However in real seas 
there is often a mixture of new and old sea states that may create very broad spectra with several local 
peaks. In order to be able to capture the specific characteristics of such conditions, the simulation model 
has to be sufficiently broad and sufficiently detailed.

Figure 5.1 below shows the span of periods covered by 2-parameter spectra with zero crossing periods 
from 3s to 15s. In order to have one single simulation scheme to cover all this range with high quality, it 
is suggested that the period increment should be about 0.5s starting from 0.5s and the upper limit 
above 2.3*Tz.

An possible alternative would be to use a fixed number of components over the interesting range, from 
0.5s to 2.3*Tz. From a quality point of view it would be fully sufficient to use about 20 components to 
cover the range of interest. e drawback of this alternative is of course that the discrete component 
periods will not be the same for different wave spectra.
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Figure 5.1 Wave spectra in the period domain for various zero crossing periods.
e significant wave height is set to constant 4m for comparison but may not be rea-
listic for the very short periods.
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A proposed standard simulation model with fixed periods increments of 0.5s can thus be formulated as

    

ζ(t ) = 2 S(T )dT
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∑  (5.1)

where S(T) is the transformed wave spectra according to (3.1).

e alternative formulation using a fixed number of n (20 is sufficient) period components becomes

    

ζ(t ) = 2 S(T )dT
0.5+

(i−1.5)
(n−1)

2.3Tz

0.5+
(i−0.5)
(n−1)

2.3Tz

∫ ⋅cos 2π

0.5+
(i−1)
(n−1)

2.3Tz

t + εi

⎛

⎝

⎜⎜⎜⎜⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥

i=1

n

∑  (5.2)

Both will yield excellent wave sequences with, in practice unlimited return periods for any foreseeable 
irregular wave condition of interest for ship analysis. e first (5.1) could be preferable when used with 
pre-calculated transfer functions, while the second (5.2) may be more efficient in a direct simulation.

Figures 5.2-5.4 shows examples using (5.1) and (5.2) for three different zero crossing periods 6s, 9s and 
12s. e time sequence shown is 10Tz but the statistical histogram is based on one hour sampling.

M Huss Notes on the modeling of irregular seas in time simulations R2  2010-11-29
  11(15)

  



M Huss Wave spectra modeling 4(7)

Wave simulation period based

Period components:

Tci
Tstart Tstep i 1−( )⋅+:= λTc

g Tc
2⋅

2 π⋅
:= ωTc

2 π⋅
Tc

:=

aTci
Tci

0.5 Tstep⋅−

Tci
0.5 Tstep⋅+

Tc2 ST Hs Tz, Tc, ( )⋅
⌠


⌡

d:= amax
i

aTci∑:= amax 6.247=

wavea t( )
i

aTci
sin ωTci( ) t⋅ εi+





⋅



∑:=

0 50 100
4−

2−

0

2

4

0

4− 2− 0 2 4
0

0.2

0.4

0.6

0.8 Hs 4= Tz 6= n 28=

amax_theoretical 6.247=

amax_sampled 3.739− 3.577( )=

σsampled 0.999=

Wave simulation period based

101018_Wavespectra.xmcd.xmcd saved 2010-10-19 00:27

M Huss Wave spectra modeling 4(8)

Wave simulation period based

Period components:

Tci
Tstart Tstep i 1−( )⋅+:= λTc

g Tc
2⋅

2 π⋅
:= ωTc

2 π⋅
Tc

:=

aTci
Tci

0.5 Tstep⋅−

Tci
0.5 Tstep⋅+

Tc2 ST Hs Tz, Tc, ( )⋅
⌠


⌡

d:= amax
i

aTci∑:= amax 5.286=

wavea t( )
i

aTci
sin ωTci( ) t⋅ εi+





⋅



∑:=

0 50 100
4−

2−

0

2

4

0

4− 2− 0 2 4
0

0.2

0.4

0.6

0.8 Hs 4= Tz 6= n 20=

amax_theoretical 5.286=

amax_sampled 3.454− 3.619( )=

σsampled 0.999=

Wave simulation period based

101018_Wavespectra.xmcd.xmcd saved 2010-10-19 00:27

Figure 5.2 Simulation of 2-parameter spectrum with Hs=4m and zero crossing period Tz=6s.
e example at top is based on (5.1) and at bottom on (5.2)
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Figure 5.3 Simulation of 2-parameter spectrum with Hs=4m and zero crossing period Tz=9s.
e example at top is based on (5.1) and at bottom on (5.2)
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Figure 5.4 Simulation of 2-parameter spectrum with Hs=4m and zero crossing period Tz=12s.
e example at top is based on (5.1) and at bottom on (5.2)
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6  Recommendations

It is highly recommended to use a transformation of the traditional frequency based wave spectrum to a 
period based spectrum for the purpose of simulation of wave sequences and wave induced effects on 
ships such as motions and dynamic stability variation. is transformation will enable the use of fewer  
components and at the same time a very high statistical quality and unlimited return periods before the 
wave pattern will be repeated.

For benchmarking purposes it is further recommended to standardise the wave modelling so that actual 
simulation sequences can be repeated. With fixed period increments and an unlimited return period the 
random phase lag between components could be locked so that specific wave patterns can be identified 
by referring just to a specific sequence in time.
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