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Geometric Modelling and Hydrostatics of Ships
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Geometric modelling basics

Different forms of curve description

Blending functions;  What are they?  How do they look?

Cubic non-interpolating curves;  Bezier-curves,  B-splines,  (H-splines)

Using non-interpolating curves as interpolators

Surface modelling by using curves (HYSS approach)

Hydrostatics - merely a question of integration

Different integration methods

Sectional integration (HYSS approach)

Longitudinal integration (HYSS approach)
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Parametric curves - Algebraic form

x u .6 u3 .6 u2 .0 u 0 y u .3 u3 .2 u2 .5 u 0

0 0.5 1
2

1

0

1

x u

y u

u
0.5 0 0.5 1
2

1.5

1

0.5

0

y u

x u

€

p(u) =U(u) ⋅A

U(u) = un L u 1[ ] A =

anx any anz
M M M

a1x a1y a1z
a0x a0y a0z





















A =

an
M

a1
a0



















€

p0 = x0 y0 z0[ ] p1 = x1 y1 z1[ ]
x(u) = anx ⋅ u

n +K+ a1x ⋅ u + a0x
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Parametric form is almost a necessity when modelling real world geometry!
Usually one curve segment is described by a single normalised parameter u [0,1]

Consider a general 3D-curve with the two end points p0 and p1
The x,y,z-coordinates along the curve are described as polynomial functions of the 
single parameter u:

Example:
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Parametric curves - Geometric Point form
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A =Up
−1
⋅Pp =N⋅Pp

p(u) =U(u) ⋅A =U(u) ⋅N⋅Pp =F(u) ⋅Pp

The algebraic coefficients may be expressed in terms of known coordinate points 
along the curve. For a linear representation we need two points (the end points), 
for a quadratic representation we need three points, for a cubic representation 
four points etc. (i.e. one point more than the degree of the polynom).

F(u) is a blending function 
(form function) which describes 
the relative influence from each 
point at a certain u value.

The sum of all components F(u) 
equals unity everywhere. 

Examples of blending functions for points at equally distributed u values:
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Parametric Geometric form with tangents
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geometric form for cubic curves:
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The geometric point form uses known point data to describe the curve (instead 
of explicit algebraic coefficients). However, instead of just using coordinates as in 
the point form, the geometric form also allows the use of derivatives. The most 
used geometric form is cubic because we may then use the four known data: two 
end-points coordinates and two derivatives to describe the full curve. By control-
ling derivatives at end-points we can assure that a compound curve built up from 
several curve segments is continuous at least up to the second derivative (smooth 
tangent). 

G(u) is a geometric blending function 
describing the influence from end-point 
data (coordinates and derivatives) along 
the curve.

(Note, the matrix is somewhat reor-
dered compared to standard notation)
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Geometric form - Example
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The example compares the geometry of two curves in the x-y plane, PG1 and PG2, both 
with the same coordinates (0,0) (1,1) and derivatives dy/dx = -1 at ends. However, 
PG2 has four times larger parametric derivatives dx/du, dy/du than PG1.

y(x)  (real space)

The real space plot shows that the 
geometric form allows control over 
both tangent direction and curvature 
(tangent length) !
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Bezier curves (non interpolating)
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Cubic Bezier curves:
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Bezier-curves are a family of curves (of different order) guided by points, but only 
passing through the end points. The other points are used as curve controls. The 
most common Bezier curves are cubic with one extra control point at each curve 
end which guides the tangent and tangent length (well known from most vector 
drawing programs). By making the second last and last point from one curve seg-
ment colinear with the first and second first points of the next segment, continuity 
in second derivatives are obtained. Cubic Bezier curves have the same properties 

as previously described cubic curves, the control 
point is just an easy way to adjust the tangent at 
the end point (which is identical to 3.(p0c-p0) and 
3.(p1-p1c)).  

Blending functions for cubic Bezier curves:

Example:
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B-splines  (non-interpolating)
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B-splines are a family of curves guided by a sequence of control points (of unlim-
ited number) which the curve generally don’t pass through. The order of the curve 
decides the number of control points that at the same time affects the curve. A 
first order curve is only affected by one control point at the time (histogram), a 
second order curve is affected by two points (linear variation). The most common 
B-splines are cubic, guided by the four closest points of the sequence.
The major advantage of the B-spline formulation is the possibility to control a 
complicated curve locally and still keep continuous derivatives. The major disad-
vantage is that you don’t have control over the coordinates. However, knuckles 
may be introduced by letting several control points coincide. 

J above denotes the curve 
interval “between” control 
points pj and pj+1 in a con-
tinuous curve.
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B-splines - Example
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Below are two examples of B-spline curves based on a sequence of control points

 Quadratic (third order):       Cubic (fourth order):
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H-splines (non interpolating)
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H-splines are in-house invented curves 
with a completely different basic formu-
lation which is not polynomial!

(So far I haven’t found any literature 
about these or similar formulations so 
I keep it for the time beeing as a secret 
for possibly future patents).

The major advantage with H-splines 
compared to B-splines is that they are a 
little more smooth and have higher or-
der continuous derivatives.

Besides this they can be handled ex-
actly as cubic B-splines! It is therefore 
possible to use the same computer 
algorithms for both kind of splines, it 
is just the blending functions that are 
switched. 
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Using non-interpolating curves as interpolators
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Cubic B - splines:
p(u) =U(u) ⋅MBs ⋅PJ =GBs(u) ⋅PJ

′p (u) = ′U (u) ⋅MBs ⋅PJ =GBs
′(u) ⋅PJ

Geometric form for cubic curves:
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B - spline points that satisfy the geometric form:

PJ =GBsG
−1
⋅PG

Generally for any sequence of points on a curve including the end derivatives
we can find the B - spline points that satisfy the geometry:
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With simple matrix algebra we may transform B-spline curves to interpolating 
geometric curves and v.v. It is thus possible to interpolate a large sequence of 
points without increasing the degree of the polynom and still let the curve at any 

point be dependent on all the other points.  Subsequently 
the curve may be further modified locally just by adjusting 
the B-spline points
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Parametric surface modelling
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Surface modelling may in principal be performed by the same methods as curve 
modelling. The coordinates of a surface is described by two parameters, p(u,w), 
instead of just one. The geometric equations for a cubic surface may be solved 
from 16 or 12 points on the surface (similar to the point form for curves) or may 
be solved from 4 corner coordinates together with 2 or 3 derivatives (similar to the 
previously described general geometric form for curves). The four "internal" points 
or the four "extra" derivatives are not necessary but allows for a more detailed 
description of the geometry "within" the surface.

Cubic B-splines or similar formulations are commonly used also for surface model-
ling.

If one of the surface parameters is fixed to a space coordinate direction, surface 
modelling may also be directly performed by curves only by adding information 
of the tangent in the "fixed" direction along the curve. This approach has several 
advantages when dealing with ship hulls.  
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Surface modelling from Lines (HYSS approach)

1 A reasonable number of longitudinal 
Lines are defined with points giving x,y,z-

coordinates. In this case 8 lines: the Bottom 
CL, 5 Diagonals, Sheer Line and Deck CL. The 
curvature of the lines is here automatically 
calculated but may also be modified (tan-
gent length and direction). Lines are H- or 
B-splines or straight.

2 For each Line, the tangent and direction 
in the sectional plane is automatically cal-

culated from the position of the surrounding 
lines or may be specified (varying as a poly-
nomial of third degree).

3 The lines are (after check) mirrored in the 
CL-plane.

4 Sections are cut from the lines by picking 
coordinates and tangent data from the 

lines in their defined order. In the example, 
the tangent length of Sheer Line and Keel is 
set to zero (knuckle) and the tangent length 
of Deck CL is increased to create a camber.
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Surface Modelling from Lines;  pros and cons
 Pros:
- Limited, efficient input
- Full control over coordinates
- Lines define the natural 

boundary of a hull
- Lines are smooth
- Full control over sections 

which are used for calculation 
of hydrostatics

- Easy to model knuckles and 
transitions between knuckles 
and curved body

- Multihull sections no problem
- Lines may be created (cut) 

from sections, and thus it is 
possible to create a full sur-
face model from an offset ta-
ble and a stem-stern contour.

 Cons:
- No automatic coordinate release (smoothing)
- Discontinuities may arise when Lines ends on 

a surface 

 Limitations:
- Lines must be defined with increasing 

longitudinal coordinate where sections 
are cut

- Lines must be defined in the correct se-
quence along the sections
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Hydrostatics - merely a question of integration
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Numerical integration methods
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Numerical integration is a standard procedure in engineering applications. Howev-
er, for integration of ship geometries with no explicit mathematical description and 
with possible steps and knuckles, standard procedures are not always feasible.

 Step by step (discretisation)

 Polynomial approximations:
- Newton-Cotes  (series of values at equal steps multiplied
 with specific factors, i.e. Simpsons rules)

- Tchebycheff  (series of values at specific positions)

- Gauss  (series of values at specific positions multiplied with specific factors)

- Direct partial polynomial identification with analytical integration 

 Parametric integration:
- Analytical from the geometric description

- Step by step (in parametric space)
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Integration methods in HYSS

Sectional integration
is performed step-by-step in 
the parametric description 
around the crosspoint be-
tween water line and CL

 This enables:
- Unlimited precision, de-

pendent only on the number 
of steps for each curve seg-
ment

- Multihull integration auto-
matically

- Absolutely stable perform-
ance

- No problem with a mixture 
of curved segments, straight 
segments and knuckles

- Independent of heel angle

Longitudinal integration
of sectional values is performed with a partial third 
degree polynomial description with limitations to as-
sure stable performance.

- Enables uneven spacing between sections

- Allowance for steps (deckhouses) by adding close 
sections around the step

- Precision dependent on number of sections


